NOT FOR ONWARD DISTRIBUTION

RATES UNIVERSITY

1. Basic Financial Maths \& Bond Pricing

Contents

This short module will focus on the following basic financial mathematics calculations

- Simple Interest
- Compound Interest
- Interest Rate bases
- Annuities

I will illustrate each of the concepts with examples

Finally we will look at how Bond prices are calculated.

Simple Interest

Simple Interest is the method used when the amount of interest per period is calculated on the Initial Principal only.

Interest is thus not calculated on the accumulated interest earned to date (interest is not compounded)

Define the following variables

```
P = Principal
I = Total Simple Interest
S = Accumulated Value (Future Value of P)
r = simple interest rate per period
t = number of time periods
```

The periods are usually measured in years, and this is the convention we adopt.

The basic formula for simple interest is that

$$
I=P \times r \times t
$$

Simple Interest

It immediately follows that ...

$$
S=P(1+r t)
$$

Inverting this we can see that the discounting equation becomes

$$
P=\frac{S}{(1+r t)}
$$

Example 1

To what amount would EUR 1,000 accumulate at 4.00% p.a. simple interest for 9 months?
$s=P(1+r t)$
$=1,000 \times(1+0.04 \times 0.75)$
= 1,030

Simple Interest

Coupons are calculated on a simple interest basis ...

Coupon Amount $=$ Coupon Rate \times Year Fraction

Year Fraction is calculated via 30/360, Act/360, Act/365, ... bases

Example (a) Qtly coupon paid with a 5.00\% nominal rate 30/360
Coupon Amt $=5.00 \% \times 90 / 360=1.25 \%$

Example (b) Semi coupon paid with a 7.50% nominal rate Act/360
Coupon Amt $=7.50 \% \times 182 / 360=3.792 \%$

Compound Interest

Compound Interest is the interest method used when interest amounts due are reinvested (thereby earning interest), rather than being paid periodically.

We define the following variables

```
P = Principal
S = Accumulated Value (Future Value of P)
i = interest rate per period
n = number of time periods
```

The time periods can be for instance, days, months, quarters, semi-annual periods ...

Then the fundamental formula for compound interest is ...

$$
S=P(1+i)^{n}
$$

so that

$$
P=\frac{S}{(1+i)^{n}}
$$

Interest is calculated at rate i per period. It is then reinvested at the same rate, accumulating as we go

Compound Interest

Example 2

To what amount would USD 2,000 accumulate at 6.25% annual compounding for 3 years?

```
s=P(1+i)
    = 2,000 (1+0.0625)
    = 2,398.93
```


Example 3

What is the Present Value of EUR 10,000 due in 5 years, where interest compounds at 5.50% annual?

$$
\begin{aligned}
P & =\frac{S}{(1+i)^{n}} \\
& =\frac{10,000}{(1+0.055)^{5}} \\
& =7,651.34
\end{aligned}
$$

Interest Rate Bases

In many compound interest situations, interest is compounded more frequently than annually.

For example, interest could be compounded ...

- semi-annually
- quarterly
- monthly
- daily

Irrespective of the compounding frequency, interest rates are generally expressed as nominal annual rates. These need to be converted to an effective rate corresponding to the compounding period before they can be used in calculations.

For example ...

- 8.00% nominal annual rate, compounded semi = effective rate of 4.00% every 6 m
- 8.00% nominal annual rate, compounded quarterly = effective rate of 2.00% every 3 m
- 8.00% nominal annual rate, compounded monthly $=$ effective rate of $8 \% / 12=0.67 \%$ each month

These rates are all different, and we need to be careful when applying them.

Interest Rate Bases

We define the following additional notation

$$
\begin{aligned}
& \mathrm{m}=\text { frequency of compounding } \\
& \mathrm{j}_{\mathrm{m}}=\text { nominal interest rate p.a. compounded } m \text { times per year } \\
& \mathrm{i} \\
& \mathrm{j} \\
& \mathrm{j}
\end{aligned}=\text { effective interest rate per period } \quad \text { effective annual interest rate }
$$

By definition

$$
\mathrm{i}=\mathrm{j}_{\mathrm{m}} / \mathrm{m}
$$

By considering the compounding of \$1, m times per year, for 1 year, we have

$$
(1+i)^{m}=\left(1+j_{m} / m\right)^{m}=(1+j)
$$

Consequently

$$
j=\left(1+j_{m} / m\right)^{m}-1
$$

Indeed we can convert between rates of different compound frequencies via ...

$$
(1+j)=\left(1+j_{2} / 2\right)^{2}=\left(1+j_{4} / 4\right)^{4}=\left(1+j_{12} / 12\right)^{12}=\left(1+j_{365} / 365\right)^{365}
$$

Interest Rate Bases

For example, if we want to convert from a 6.00\% nominal annual rate to the equivalent nominal semi rate, we use

$$
(1+j)=\left(1+\mathrm{j}_{2} / 2\right)^{2}
$$

so that ...

$$
\mathrm{j}_{2}=2 \times\left[(1+\mathrm{j})^{0.5}-1\right]=2 \times\left[(1.06)^{0.5}-1\right]=5.913 \% \text { Semi }
$$

Likewise, converting $\mathrm{j}_{4}=5.00 \%$ nominal quarterly into the equivalent semi rate, we proceed via

$$
\left(1+\mathrm{j}_{2} / 2\right)^{2}=\left(1+\mathrm{j}_{4} / 4\right)^{4}
$$

or

$$
\left(1+\mathrm{j}_{2} / 2\right)=\left(1+\mathrm{j}_{4} / 4\right)^{2}
$$

and

$$
\mathrm{j}_{2}=2 \times\left[\left(1+\mathrm{j}_{4} / 4\right)^{2}-1\right]=2 \times\left[(1+0.05 / 4)^{2}-1\right]=5.031 \% \text { Semi }
$$

Note that 5.00\% Qtly grosses up to 5.031\% Semi.

 5.00\% Qtly is a higher rate than 5.00% Semi since compounding Qtly means interest is re-invested earlier.
Continuous Compounding

It is sometimes convenient to allow for instantaneous, or continuous compounding.
This occurs when the frequency of re-investment approaches ∞.

Continuous compounding has nice mathematical properties, and is frequently encountered in various option formulae.

For this reason we briefly introduce it here.
It is easy to prove that the following mathematical relationship holds ...

$$
\lim _{n \rightarrow \infty}(1+r / n)^{n}=e^{r}
$$

From this, we find

$$
e^{c}=(1+\mathrm{j})=\left(1+\mathrm{j}_{2} / 2\right)^{2}=\left(1+\mathrm{j}_{4} / 4\right)^{4}=\left(1+\mathrm{j}_{12} / 12\right)^{12}=\left(1+\mathrm{j}_{365} / 365\right)^{365}
$$

where c is the continuously compounded rate.

Taking logarithms (base e) both sides gives

$$
c=\ln (1+\mathrm{j})=2 \times \ln \left(1+\mathrm{j}_{2} / 2\right)=4 \times \ln \left(1+\mathrm{j}_{4} / 4\right)=12 \times \ln \left(1+\mathrm{j}_{12} / 12\right)=\ldots
$$

Continuous Compounding

For example, converting a 6.00\% nominal annual rate to the equivalent continuous rate, we find

$$
c=\ln (1+j)=\ln (1+0.06)=5.827 \%
$$

Similarly, converting a 5.25\% Quarterly rate to the equivalent continuous rate,

$$
c=4 \times \ln \left(1+j_{4} / 4\right)=4 \times \ln (1+0.0525 / 4)=5.216 \%
$$

Finally, converting a 5.00\% daily rate to the equivalent continuous rate,

$$
c=365 \times \ln \left(1+j_{365} / 365\right)=365 \times \ln (1+0.0500 / 365)=4.9996 \%
$$

If we discount cashflows using continuous compounding we use the fact that

$$
e^{-c t}=\frac{1}{(1+j)^{\mathrm{t}}}=\frac{1}{\left(1+\mathrm{j}_{2} / 2\right)^{2 t}}=\frac{1}{\left(1+\mathrm{j}_{4} / 4\right)^{4 t}}=\ldots \quad \text { where } t \text { is measured in years }
$$

So for example, discounting a cashflow of EUR 100,000 occuring in 3 years at a continuously compounded rate of 5.50% leads to a Present Value of ...

$$
P=e^{-c t} \times 100,000=e^{-0.055 \times 3} \times 100,000=84,789.97
$$

Annuities

An annuity is a portfolio of identical cashflows that occur at regular points in time.

The most obvious example of an annuity are the coupons on a fixed rate Bond.

If we assume a flat (constant) discount rate we can derive a simple expression for the value of an annuity

There are 2 basic types

- Annuity in arrears (the most common type)
- Annuity in advance

In an arrears annuity it is assumed that the common cashflow

Annuity in advance

 is paid at the end of each payment period.

In an advance annuity it is assumed that the common cashflow is paid at the start of each payment period.

Annuities

We begin by looking at the annuity in arrears.

Note that i is not necessarily an annualised rate. i is the discount rate per period, and periods can be monthly, quarterly, semi, ...

Letting P denote the price, and applying compound interest to discount the cashflows c at a rate of i per period gives us

$$
P=\frac{c}{(1+i)^{1}}+\frac{c}{(1+i)^{2}}+\frac{c}{(1+i)^{3}}+\ldots+\frac{c}{(1+i)^{n}}
$$

If we define $\quad v=\frac{1}{(1+i)}$
this becomes

$$
P=c \cdot v^{1}+c \cdot v^{2}+c \cdot v^{3}+\ldots+c \cdot v^{n}
$$

or

$$
P=\frac{c \cdot\left(1-v^{n}\right)}{i}
$$

Annuities

For those who prefer to see that result derived, we start with

$$
\begin{equation*}
P=c \cdot v^{1}+c \cdot v^{2}+c \cdot v^{3}+\ldots+c \cdot v^{n} \tag{1}
\end{equation*}
$$

From this we see

$$
\begin{equation*}
\frac{P}{v}=c+c \cdot v^{1}+c \cdot v^{2}+\ldots+c \cdot v^{n-1} \tag{2}
\end{equation*}
$$

Subtracting (1) from (2) gives ...

$$
\begin{equation*}
P \cdot\left(\frac{1}{v}-1\right)=\left(c-c \cdot v^{n}\right)=c \cdot\left(1-v^{n}\right) \tag{3}
\end{equation*}
$$

But

$$
\frac{1}{v}-1=(1+i)-1=i
$$

and so (3) gives

$$
P=\frac{c \cdot\left(1-v^{n}\right)}{i}
$$

Annuities

We now look at annuities in advance.

Annuity in advance

$$
\begin{equation*}
P^{*}=c+\frac{c}{(1+i)^{1}}+\frac{c}{(1+i)^{2}}+\ldots+\frac{c}{(1+i)^{n-1}} \tag{4}
\end{equation*}
$$

Note that each cashflow is now discounted by 1 less period as they now occur in advance.

Indeed, P^{*} and P (the annuity in arrears Price) are related by ...

$$
\frac{P^{*}}{(1+i)}=\frac{c}{(1+i)^{1}}+\frac{c}{(1+i)^{2}}+\ldots+\frac{c}{(1+i)^{n}}=P
$$

so

$$
P^{*}=P \times(1+i)=\frac{c \cdot\left(1-v^{n}\right)}{i /(1+i)}
$$

or

$$
P^{*}=\frac{c \cdot\left(1-v^{n}\right)}{(1-v)}
$$

Deferred Annuities

Finally, we look at a deferred annuity.

Assuming the annuity this time consists of ($\mathrm{n}-\mathrm{j}$) cashflows c , with

- the first cashflow at time j+1
- the last cashflow at time n

Annuity deferred j periods

Clearly this annuity is a standard n period annuity in arrears less a standard j period annuity in arrears.

Hence

$$
P_{\text {def }}=\frac{c}{(1+i)^{j+1}}+\frac{c}{(1+i)^{j+2}}+\ldots+\frac{c}{(1+i)^{n}}
$$

and

$$
P_{\text {def }}=\frac{c \cdot\left(1-v^{n}\right)}{i}-\frac{c \cdot\left(1-v^{j}\right)}{i}=\frac{c \cdot\left(v^{j}-v^{n}\right)}{i}
$$

or

$$
P_{\text {def }}=\frac{c \cdot v^{j} \cdot\left(1-v^{n-j}\right)}{i}
$$

Bond Pricing

Having calculated a variety of formulas for various annuities, we can now look at the pricing of a standard fixed rate Bond.

A fixed rate Bond with Face Value F and Coupon Rate R is nothing more than the sum of

- an annuity of fixed coupons c
- a single zero coupon flow F at Maturity
where $\quad c=F \times R \times$ DayCount
and DayCount $=1$ for Annual coupons

Note a full coupon is paid at the Next Cpn Date even though there is a short stub period to that Date.

$$
\begin{array}{ll}
=1 / 2 & \text { for Semi coupons } \\
=1 / 4 & \text { for Qtly coupons }
\end{array}
$$

Fixed Rate Bond

The pricing methodology assumes that we discount all Bond cashflows at a flat yield y , where y is expressed as a nominal annual rate.

This means that the annuity formulae we have already seen can be used to price the coupon flows.
If we price a semi-annual Bond, we would need to apply the annuity formulas, but using

$$
\mathrm{i}=1 / 2 \mathrm{y} \quad \text { as the discount rate per period }
$$

Similarly $\mathrm{i}=\mathrm{y}$ if the Bond has annual coupons

Bond Pricing - Annual Coupons

Consider then the pricing of an annual fixed rate Bond with coupon rate R and annual yield y.

Assume that the next coupon date (denoted by 0 in the diagram) is s days from the Value Date, and that there are n years from the next coupon date until Maturity.

Using a unit Bond Notional ($F=1$) we have

$$
c=R
$$

Annual Fixed Rate Bond

We start by pricing, value the next coupon date, the remaining ($n+1$) coupons

Value next coupon date, the ($n+1$) annual coupons have value ...

$$
C_{n e x t}=R+\frac{R}{(1+y)^{1}}+\frac{R}{(1+y)^{2}}+\frac{R}{(1+y)^{3}}+\ldots+\frac{R}{(1+y)^{n}}
$$

Using the formula for a basic annuity in arrears, this has value

$$
C_{n e x t}=R+\frac{R \cdot\left(1-v^{n}\right)}{y}
$$

where

$$
v=\frac{1}{(1+y)}
$$

Bond Pricing - Annual Coupons

We then need to add, again value the next coupon date, the unit Notional at Maturity.

The unit Notional is worth, value the next coupon date

$$
N_{n e x t}=\frac{1}{(1+y)^{n}}=v^{n}
$$

Annual Fixed Rate Bond

We now have the Bond Price, value the next coupon date

$$
P_{\text {next }}=C_{\text {next }}+N_{\text {next }}=R+\frac{R \cdot\left(1-v^{n}\right)}{y}+v^{n}
$$

The final step is to discount the Price from the next coupon date back s days to our Value Date t_{0}
The usual approach is to use a discount factor to the next coupon date of $\frac{1}{(1+y)^{s / d}}=v^{s / d}$
where $\quad d=$ the number of days in the current coupon period (last coupon date to next coupon date)
So, our Bond Price value t_{0} is $P=v^{s / d} \cdot P_{\text {next }}$
or

$$
P=v^{s / d} \cdot\left[R+\frac{R \cdot\left(1-v^{n}\right)}{y}+v^{n}\right]
$$

Bond Pricing - Accrued Interest

The Price we have just calculated for an annual coupon fixed rate Bond, viz.

$$
P=v^{s / d} \cdot\left[R+\frac{R \cdot\left(1-v^{n}\right)}{y}+v^{n}\right]
$$

where

$$
R=\text { coupon rate (annual) }
$$

$\mathrm{y}=$ yield (annual)
d = \# days in current (annual) coupon period
s = \# days from the Value Date to the next coupon date
and

$$
v=\frac{1}{(1+y)}
$$

is a so-called Dirty Price.
It is called that because it is "contaminated" by accrued interest.
An investor who buys the Bond for value t_{0} is entitled to a full coupon R on the next coupon date.
This is true irrespective of the length of the stub period. The investor is effectively receiving the coupon interest accrued from the Last Coupon Date until the Value Date, despite not having held the Bond during that period.

Bond Pricing - Accrued Interest

As a consequence of this accrued interest, the Dirty Price will fluctuate over time, even if yields do not change.
Indeed the Dirty Price typically has a classic "saw-tooth" graph.

The Dirty Price rises between coupon dates as interest accrues during the current period.
The Dirty Price then falls on each coupon date as coupons are paid and hence removed from the Dirty Price calculation.

$$
P=v^{s / d} \cdot\left[R+\frac{R \cdot\left(1-v^{n}\right)}{y}+v^{n}\right] \quad P=\left[\frac{R \cdot\left(1-v^{n}\right)}{y}+v^{n}\right]
$$

Dirty Price before the coupon paid
Dirty Price just after the coupon paid

To enable investors to better monitor Bond Price movements due to yield changes, Bonds are typically quoted as a Clean Price, where

Clean Price $=$ Dirty Price less Accrued Interest

Bond Pricing - Accrued Interest

Interest is assumed to accrue on a straight line basis .. even though this is strictly speaking only approximately correct.

The Accrued Interest is calculated via ...

Note that a,s and d are typically calculated on a 30/360 basis

The Accrued Interest is then

$$
\text { Accrued Interest }=\text { Coupon } \times(\mathrm{a} / \mathrm{d})
$$

```
where a = # days from Last Coupon Date to Settlement Date (30/360 basis)
    d = # days in the current coupon period

\section*{Bond Pricing - Annual Coupon Example}

We look at an example of pricing a fixed rate annual coupon Bond.

Annual Bond maturing 15 February 2013

Assume the following Bond data ...
\begin{tabular}{ll} 
Settle Date & 15 January 2007 \\
Maturity Date & 15 February 2013 \\
Coupon & \(6.00 \%\) annual \\
Yield & \(5.50 \%\) annual
\end{tabular}


We use
\[
\text { Dirty Price }=v^{s / d} \cdot\left[R+\frac{R \cdot\left(1-v^{n}\right)}{y}+v^{n}\right]
\]
where \(\quad \begin{array}{ll}s & =30(1 \text { month }) \\ d & =360(12 \text { mths })\end{array} \quad v=\frac{1}{(1+y)}=\frac{1}{(1+0.055)}=0.9479\)
Dirty Pr ice \(=0.9479^{30 / 360} \cdot\left[6.00 \%+\frac{6.00 \% \cdot\left(1-v^{6}\right)}{5.50 \%}+0.9479^{6}\right]=0.9479^{30 / 360} \cdot 108.498 \%=108.015 \%\)
Accrued Interest \(=6.00 \% \cdot \frac{330}{360}=5.500 \%\)

\section*{Bond Pricing - Annual Coupon Example}

If we re-price the same Bond with a yield this time of \(6.25 \%\)
Annual Bond maturing 15 February 2013
\begin{tabular}{ll} 
Settle Date & 15 January 2007 \\
Maturity Date & 15 February 2013 \\
Coupon & \(6.00 \%\) annual \\
Yield & \(6.25 \%\) annual
\end{tabular}


We now have
\[
v=\frac{1}{(1+y)}=\frac{1}{(1+0.0625)}=0.9412
\]

Dirty Pr ice \(=0.9412^{30 / 360} \cdot\left[6.00 \%+\frac{6.00 \% \cdot\left(1-v^{6}\right)}{6.25 \%}+0.9412^{6}\right]=0.9412^{30 / 360} \cdot 104.780 \%=104.252 \%\)
Accrued Interest \(=6.00 \% \cdot \frac{330}{360}=5.500 \%\)
Clean Price \(=104.252 \%-5.500 \%=98.752 \% \quad\) Prices below 100 since coupon \(<\) yield

\section*{Bond Pricing - Semi Coupons}

We now look at the pricing of a semi-annual fixed rate Bond with coupon rate R and semi-annual yield y .

Now coupons occur every 6 months.

Each coupon is now \(50 \%\) of the quoted annualised coupon rate, so
\[
c=1 / 2 R
\]


We assume now that there are \(n\) semi-annual periods from the Next Coupon Date till Maturity

Value next coupon date, the \((n+1)\) remaining semi-annual coupons have value ...
\[
C_{n e x t}=1 / 2 R+\frac{1 / 2 R}{(1+1 / 2 y)^{1}}+\frac{1 / 2 R}{(1+1 / 2 y)^{2}}+\frac{1 / 2 R}{(1+1 / 2 y)^{3}}+\ldots+\frac{1 / 2 R}{(1+1 / 2 y)^{n}}
\]

Using the formula for a basic annuity in arrears, this has value
\[
C_{n e x t}=1 / 2 R+\frac{1 / 2 R \cdot\left(1-v^{n}\right)}{1 / 2 y}
\]
where
\[
v=\frac{1}{(1+1 / 2 y)}
\]

\section*{Bond Pricing - Semi Coupons}

We then need to add, again value the next coupon date, the unit Notional at Maturity.

The unit Notional is worth, value the next coupon date
\[
N_{\text {next }}=\frac{1}{(1+1 / 2 y)^{n}}=v^{n}
\]


We now have the Bond Price, value the next coupon date
\[
P_{\text {next }}=C_{n e x t}+N_{n e x t}=1 / 2 R+\frac{1 / 2 R \cdot\left(1-v^{n}\right)}{1 / 2 y}+v^{n}
\]

The final step is again to discount the Price from the next coupon date back \(s\) days to our Value Date \(t_{0}\)
This time we use a discount factor to the next coupon date of \(\frac{1}{(1+1 / 2 y)^{5 / d}}=v^{s / d}\)
where \(\quad d=\) the number of days in the current semi coupon period (30/360 basis)
So, our Bond Price value \(t_{0}\) is \(P=v^{s / d} \cdot P_{\text {next }}\)
or
\[
P=v^{s / d} \cdot\left[1 / 2 R+\frac{1 / 2 R \cdot\left(1-v^{n}\right)}{1 / 2 y}+v^{n}\right]
\]

\section*{Bond Pricing - Semi Coupon Example}

We look at an example of pricing a fixed rate semi-annual coupon Bond.

Assume the following Bond data ...
\begin{tabular}{ll} 
Settle Date & 15 January 2007 \\
Maturity Date & 20 April 2012 \\
Coupon & \(5.00 \%\) semi-annual \\
Yield & \(5.25 \%\) semi-annual
\end{tabular}

\section*{Semi Bond maturing 20 April 2012}

We use Dirty Price \(=v^{s / d} \cdot\left[1 / 2 R+\frac{1 / 2 R \cdot\left(1-v^{n}\right)}{1 / 2 y}+v^{n}\right]\)
where \(\quad \mathrm{n}=10\) (semi periods)
\(s=95(=3 \times 30+5)\)
\(\begin{array}{ll}d=180 \\ a=85\end{array} \quad v=\frac{1}{(1+1 / 2 y)}=\frac{1}{(1+0.02625)}=0.9744\)

Dirty Pr ice \(=0.9744^{95 / 180} \cdot\left[2.50 \%+\frac{2.50 \% \cdot\left(1-v^{10}\right)}{2.625 \%}+0.9744^{10}\right]=0.9744^{95 / 180} \cdot 101.413 \%=100.036 \%\)
Accrued Interest \(=2.50 \% \cdot \frac{85}{180}=1.181 \% \quad\) Note that this is a \(\%\) of the actual coupon of \(2.50 \%\)
Clean Price \(=100.036 \%-1.181 \%=98.855 \% \quad\) Prices below 100 since coupon \(<\) yield

\section*{Disclaimer}

This communication has been prepared by individual sales and/or trading personnel of Citigroup Global Markets Limited (CGML) or its subsidiaries or affiliates (collectively Citi). In the United Kingdom, CGML is authorised by the Prudential Regulation Authority and regulated by the Financial Conduct Authority and the Prudential Regulation Authority (together, the UK Regulator) and has its registered office at Citigroup Centre, Canada Square, London E14 5LB. This communication is directed at persons (i) who have been or can be classified by Citi as eligible counterparties or professional clients in line with the rules of the UK Regulator, (ii) who have professional experience in matters relating to investments falling within Article 19(1) of the Financial Services and Markets Act 2000 (Financial Promotion) Order 2005 and (iii) other persons to whom it may otherwise lawfully be communicated. No other person should act on the contents or access the products or transactions discussed in this communication. In particular, this communication is not intended for retail clients and Citi will not make such products or transactions available to retail clients. The information contained herein may relate to matters that are (i) not regulated by the UK Regulator and/or (ii) not subject to the protections of the United Kingdom's Financial Services and Markets Act 2000 and/or the United Kingdom's Financial Services Compensation Scheme
All material contained herein, including any proposed terms and conditions, is indicative and for discussion purposes only, is subject to change without notice, is strictly confidential, may not be reproduced and is intended for your use only. It does not include a number of terms and conditions that will be included in any actual transaction and final terms and conditions are subject to further discussion and negotiation nor does it purport to identify all risks (direct or indirect). This communication is not a commitment to deal in any product, offer financing or enter into any transaction described herein
Citi is not acting as your agent, fiduciary or investment adviser and is not managing your account. The provision of information in this communication is not based on your individual circumstances and should not be relied upon as an assessment of suitability for you of a particular product or transaction. It does not constitute investment advice and Citi makes no recommendation as to the suitability of any of the products or transactions mentioned. Even if Citi possesses information as to your objectives in relation to any transaction, series of transactions or trading strategy, this will not be deemed sufficient for any assessment of suitability for you of any transaction, series of transactions or trading strategy. Save in those jurisdictions where it is not permissible to make such a statement, we hereby inform you that this communication should not be considered as a solicitation or offer to sell or purchase any securities, deal in any product or enter into any transaction. You should make any trading or investment decisions in reliance on your own analysis and judgment and/or that of your independent advisors and not in reliance on Citi and any decision whether or not to adopt any strategy or engage in any transaction will not be Citi's responsibility. Citi does not provide investment, accounting, tax, financial or legal advice; such matters as well as the suitability of a potential transaction or product or investment should be discussed with your independent advisors. Prior to dealing in any product or entering into any transaction, you and the senior management in your organisation should determine, without reliance on Citi, (i) the economic risks or merits, as well as the legal, tax and accounting characteristics and consequences of dealing with any product or entering into the transaction (ii) that you are able to assume these risks, (iii) that such product or transaction is appropriate for a person with your experience, investment goals, financial resources or any other relevant circumstance or consideration. Where you are acting as an adviser or agent, you should evaluate this communication in light of the circumstances applicable to your principal and the scope of your authority.
The information in this communication, including any trade or strategy ideas, is provided by individual sales and/or trading personnel of Citi and not by Citi's research department and therefore the directives on the independence of research do not apply. Any view expressed in this communication may represent the current views and interpretations of the markets products or events of such individual sales and/or trading personnel and may be different from other sales and/or trading personnel and may also differ from Citi's published research - the views in this communication may be more short term in nature and liable to change more quickly than the views of Citi research department which are generally more long term. On the occasions where information provided includes extracts or summary material derived from research reports published by Citi's research department, you are advised to obtain and review the original piece of research to see the research analyst's full analysis. Any prices used herein, unless otherwise specified, are indicative. Although all information has been obtained from, and is based upon sources believed to be reliable, it may be incomplete or condensed and its accuracy cannot be guaranteed. Citi makes no representation or warranty, expressed or implied, as to the accuracy of the information, the reasonableness of any assumptions used in calculating any illustrative performance information or the accuracy (mathematical or otherwise) or validity of such information. Any opinions attributed to Citi constitute Citi's judgment as of the date of the relevant material and are subject to change without notice. Provision of information may cease at any time without reason or notice being given. Commissions and other costs relating to any dealing in any products or entering into any transactions referred to in this communication may not have been taken into consideration.

\section*{Disclaimer}

Any scenario analysis or information generated from a model is for illustrative purposes only. Where the communication contains "forward-looking" information, such information may include, but is not limited to, projections, forecasts or estimates of cashflows, yields or return, scenario analyses and proposed or expected portfolio composition. Any forward-looking information is based upon certain assumptions about future events or conditions and is intended only to illustrate hypothetical results under those assumptions (not all of which are specified herein or can be ascertained at this time). It does not represent actual termination or unwind prices that may be available to you or the actual performance of any products and neither does it present all possible outcomes or describe all factors that may affect the value of any applicable investment, product or investment. Actual events or conditions are unlikely to be consistent with, and may differ significantly from, those assumed. Illustrative performance results may be based on mathematical models that calculate those results by using inputs that are based on assumptions about a variety of future conditions and events and not all relevant events or conditions may have been considered in developing such assumptions. Accordingly, actual results may vary and the variations may be substantial. The products or transactions identified in any of the illustrative calculations presented herein may therefore not perform as described and actual performance may differ, and may differ substantially, from those illustrated in this communication. When evaluating any forward looking information you should understand the assumptions used and, together with your independent advisors, consider whether they are appropriate for your purposes. You should also note that the models used in any analysis may be proprietary, making the results difficult or impossible for any third party to reproduce. This communication is not intended to predict any future events. Past performance is not indicative of future performance.

Citi shall have no liability to the user or to third parties, for the quality, accuracy, timeliness, continued availability or completeness of any data or calculations contained and/or referred to in this communication nor for any special, direct, indirect, incidental or consequential loss or damage which may be sustained because of the use of the information contained and/or referred to in this communication or otherwise arising in connection with the information contained and/or referred to in this communication, provided
The transactions and any products described herein may be subject to fluctuations of their mark-to-market price or value and such fluctuations may, depending on the type of product or security and the financial environment, be substantial. Where a product or transaction provides for payments linked to or derived from prices or yields of, without limitation, one or more securities, other instruments, indices, rates, assets or foreign currencies, such provisions may result in negative fluctuations in the value of and amounts payable with respect to such product prior to or at redemption. You should consider the implications of such fluctuations with your independent advisers. The products or transactions referred to in this communication may be subject to the risk of loss of some or all of your investment, for instance (and the examples set out below are not exhaustive), as a result of fluctuations in price or value of the product or transaction or a lack of liquidity in the market or the risk that your counterparty or any guarantor fails to perform its obligations or, if this the product or transaction is linked to the credit of one or more entities, any change to the creditworthiness of the credit of any of those entities.

Citi (whether through the individual sales and/trading personnel involved in the preparation or issuance of this communication or otherwise) may from time to time have long or short principal positions and/or actively trade, for its own account and those of its customers, by making markets to its clients, in products identical to or economically related to the products or transactions referred to in this communication. Citi may also undertake hedging transactions related to the initiation or termination of a product or transaction, that may adversely affect the market price, rate, index or other market factor(s) underlying the product or transaction and consequently its value. Citi may have an investment banking or other commercial relationship with and access to information from the issuer(s) of securities, products, or other interests underlying a product or transaction. Citi may also have potential conflicts of interest due to the present or future relationships between Citi and any asset underlying the product or transaction, any collateral manager, any reference obligations or any reference entity.
Any decision to purchase any product or enter into any transaction referred to in this communication should be based upon the information contained in any associated offering document if one is available (including any risk factors or investment considerations mentioned therein) and/or the terms of any agreement. Any securities which are the subject of this communication have not been and will not be registered under the United States Securities Act of 1933 as amended (the Securities Act) or any United States securities law, and may not be offered or sold within the United States or to, or for the account or benefit of, any US person, except pursuant to an exemption from, or in a product or transaction, not subject to, the registration requirements of the Securities Act. This communication is not intended for distribution to, or to be used by, any person or entity in any jurisdiction or country which distribution or use would be contrary to law or regulation.

\section*{Disclaimer}

This communication contains data compilations, writings and information that are confidential and proprietary to Citi and protected under copyright and other intellectual property laws, and may not be reproduced, distributed or otherwise transmitted by you to any other person for any purpose unless Citi's prior written consent have been obtained.
In any instance where distribution of this communication is subject to the rules of the US Commodity Futures Trading Commission ("CFTC"), this communication constitutes an invitation to consider entering into a derivatives transaction under U.S. CFTC Regulations \(\S \S 1.71\) and 23.605 , where applicable, but is not a binding offer to buy/sell any financial instrument.
IRS Circular 230 Disclosure: Citigroup Inc. and its affiliates do not provide tax or legal advice. Any discussion of tax matters in these materials (i) is not intended or written to be used, and cannot be used or relied upon, by you for the purpose of avoiding any tax penalties and (ii) may have been written in connection with the "promotion or marketing" of a transaction (if relevant) contemplated in these materials. Accordingly, you should seek advice based your particular circumstances from an independent tax advisor.
Although CGML is affiliated with Citibank, N.A. (together with Citibank N.A.'s subsidiaries and branches worldwide, Citibank), you should be aware that none of the products mentioned in this communication (unless expressly stated otherwise) are (i) insured by the Federal Deposit Insurance Corporation or any other governmental authority, or (ii) deposits or other obligations of, or guaranteed by, Citibank or any other insured depository institution.
© 2014 Citigroup Global Markets Limited. Citi, Citi and Arc Design are trademarks and service marks of Citigroup Inc. or its affiliates and are used and registered throughout the world.```

